Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 383: 160-169, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758252

RESUMO

Regulator of G protein signaling (RGS) proteins are negative regulators of heterotrimeric G proteins that act by accelerating Gα-mediated GTPase activity to terminate G protein-coupled receptor-associated signaling. RGS8 is expressed in several brain regions involved with movement and mood. To investigate the role of RGS8 in vivo, we generated transgenic mice overexpressing brain RGS8 (RGS8tg). RGS8 gene and protein expressions were examined by real-time PCR and immunohistochemistry, respectively, and a significant increase in RGS8 protein was detected in the hippocampal CA1 region compared with wild-type mice (WT). We characterized the phenotypic traits, and found that RGS8tg showed decreased depressive-like behavior in the forced swimming test (FST). Previously, RGS8 was identified as a potent negative regulator of melanin-concentrating hormone receptor 1 (MCHR1), whose activation is mainly involved in energy homeostasis and emotional processing. Interestingly, acute oral administration of MCHR1 antagonist SNAP94847 did not have antidepressant-like effects on RGS8tg in the FST, but did show antidepressant effects on WT. In contrast, selective noradrenaline reuptake inhibitor desipramine had a significant effect on RGS8tg in the FST. MCHR1 is enriched in a subset of primary cilia, as sensory organelles that mediate extracellular signaling. Immunohistochemical analyses revealed significant elongation of MCHR1-positive cilia in the CA1 region of RGS8tg compared with WT. Taken together, these findings suggest that RGS8 participates in modulation of depression-like behavior through ciliary MCHR1 expressed in the CA1 region. The present study may support the possible modulation of RGS8 function in mood disorders.


Assuntos
Região CA1 Hipocampal/metabolismo , Depressão/metabolismo , Proteínas RGS/metabolismo , Receptores de Somatostatina/metabolismo , Animais , Depressão/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Proteínas RGS/genética , Estresse Psicológico/complicações
2.
Cell Signal ; 28(6): 572-84, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26946173

RESUMO

Melanin-concentrating hormone (MCH) receptor 1 (MCHR1) is a class A G-protein-coupled receptor (GPCR). The MCH-MCHR1 system has been implicated in the regulation of feeding, emotional processing, and sleep in rodents. Recent work revealed that MCHR1 is selectively expressed in neuronal primary cilia of the central nervous system. Cilia have various chemosensory functions in many types of cell, and ciliary dysfunction is associated with ciliopathies such as polycystic kidney disease and obesity. Although dynamic modulation of neuronal cilia length is observed in obese mice, the functional interaction of neuronal ciliary GPCR and its endogenous ligand has not yet been elucidated. We report here that MCH treatment significantly reduced cilia length in hTERT-RPE1 cells (hRPE1 cells) transfected with MCHR1. Quantitative analyses indicated that MCH-induced cilia shortening progressed in a dose-dependent manner with an EC50 lower than 1nM when cells were treated for 6h. Although the assembly and disassembly of primary cilia are tightly coupled to the cell cycle, cell cycle reentry was not a determinant of MCH-induced cilia shortening. We confirmed that MCH elicited receptor internalization, Ca(2+) mobilization, ERK and Akt phosphorylation, and inhibition of cyclic AMP accumulation in MCHR1-expressing hRPE1 cells. Among these diverse pathways, we revealed that Gi/o-dependent Akt phosphorylation was an important component in the initial stage of MCH-induced cilia length shortening. Furthermore, induction of fewer cilia by Kif3A siRNA treatment significantly decreased the MCH-mediated phosphorylation of Akt, indicating the functional importance of the MCHR1-Akt pathway in primary cilia. Taken together, the present data suggest that the MCH-MCHR1 axis may modulate the sensitivity of cells to external environments by controlling the cilia length. Therefore, further characterization of MCHR1 as a ciliary GPCR will provide a potential molecular mechanism to link cilia length control with obesity.


Assuntos
Neurônios/metabolismo , Neurônios/ultraestrutura , Receptores de Somatostatina/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Cílios/ultraestrutura , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...